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By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to
thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time
scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding
QED matrix elements. Thermalization time scales are computed for a wide range of values of both the
total-energy density �over 10 orders of magnitude� and of the baryonic loading parameter �over 6 orders of
magnitude�. This also allows us to study such interesting limiting cases as the almost purely electron-positron
plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for
laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in
which electron-positron pair plasmas play a relevant role.
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Current interest in electron-positron plasmas is due to the
exciting possibility of generating such plasmas in laboratory
facilities already operating or under construction �see, e.g.,
�1,2�; for a review see �3��. Impressive progress made with
ultraintense lasers �4� has led to the creation of positrons at
an unprecedented density of 1016 cm−3 using ultraintense
short laser pulses in a region of space with dimensions on the
order of the Debye length. However, such densities have not
yet reached those necessary for the creation of an optically
thick pair plasma �5,6�. Particle pairs are created at the focal
point of ultraintense lasers via the Bethe-Heitler conversion
of hard x-ray bremsstrahlung photons �1� in the collisionless
regime �7�. The approach to an optically thick phase may
well be envisaged in the near future.

Electron-positron plasmas are known to be present in
compact astrophysical objects, leaving their characteristic
imprint in the observed radiation spectra �8�. Optically thick
electron-positron plasmas do indeed play a crucial role in the
gamma-ray burst �GRB� phenomenon �3,9�.

From the theoretical point of view, electron-positron pair
plasmas are interesting because of the mass symmetry be-
tween the plasma components. This symmetry results in the
absence of both acoustic modes and Faraday rotation; waves
and instabilities in such plasmas differ significantly from
asymmetric electron-ion plasmas �see, e.g., �10��. Besides,
theoretical progress in understanding quark-gluon plasma in
the high-temperature limit is linked to understanding QED
plasma since the results in these two cases differ only by
trivial factors containing the QCD degrees of freedom �color
and flavor� �2�.

Most theoretical considerations so far have assumed that
an electron-positron plasma is formed either in thermal equi-
librium �common temperature, zero chemical potentials� or
in chemical equilibrium �nonzero chemical potentials� �see
e.g., �2� and references therein�. However, it is necessary to
establish the time scale for actually reaching such a configu-
ration. The only way for particles to thermalize, i.e., reach
equilibrium distributions �Bose-Einstein or Fermi-Dirac�, is

via collisions. Collisions become relevant when the mean-
free path of the particles becomes smaller than the spatial
dimensions of the plasma and so the optical thickness con-
dition is crucial for thermalization to occur.

Thermalization �chemical equilibration� time scales for
optically thick plasmas are estimated in the literature by or-
der of magnitude arguments using essentially just the reac-
tion rates of the dominant particle interaction processes �see
e.g., �11,12��. They have been computed using various ap-
proximations. In particular, electrons have been considered
ultrarelativistic and Coulomb logarithm has been replaced by
a constant. The accurate determination of such time scales as
presented here is instead accomplished by solving the rela-
tivistic Boltzmann equations including the collisional inte-
grals representing all possible particle interactions. In this
case, the Boltzmann equations become highly nonlinear
coupled partial integrodifferential equations which can only
be solved numerically.

We developed a relativistic kinetic code treating the
plasma as homogeneous and isotropic and have previously
determined the thermalization time scales for an electron-
positron plasma for selected initial conditions �13�. This ap-
proach was generalized to include protons in �14�. We focus
only on the electromagnetic interactions, which have a time
scale of less than 10−9 s for our system, and therefore on the
proton and leptonic component of the plasma. The presence
of neutrons and their possible equilibrium due to weak inter-
actions will occur only on much longer time scales.

In this paper, we report on the systematic results obtained
by exploring the large parameter space characterizing pair
plasmas with baryonic loading. The two basic parameters are
the total-energy density � and the baryonic loading param-
eter

B �
�b

�e,�
�

npmpc2

�e,�
, �1�

where �b and �e,� are, respectively, the total-energy densities
of baryons and electron-positron-photon plasma, np and mp

PHYSICAL REVIEW E 81, 046401 �2010�

1539-3755/2010/81�4�/046401�5� ©2010 The American Physical Society046401-1

http://dx.doi.org/10.1103/PhysRevE.81.046401


are the proton number density and proton mass, and c is the
speed of light. We choose the following range of plasma
parameters

1023 � � � 1033 erg/cm3, �2�

10−3 � B � 103, �3�

allowing us to also treat the limiting cases of almost pure
electron-positron plasma with B�1 and almost pure
electron-ion plasma with B�mp /me, respectively. The tem-
peratures in thermal equilibrium corresponding to Eq. �2� are
0.1�kBT�10 MeV.

Given the smallness of the plasma parameter g
= �ne�D

3 �−1�1, where �D is the Debye length and ne is the
electron number density, it is sufficient to use one-particle
distribution functions. In fact, for the pure electron-positron
plasma, the inequality 3�10−3�g�10−2 holds in the region
of the temperatures of interest. In a homogeneous and isotro-
pic plasma, the distribution functions f�� , t� depend on the
energy � of the particle and on the time t. We treat the plasma
as nondegenerate, neglecting neutrino channels as well as the
creation and annihilation of baryons and the weak interac-
tions �14�.

The relativistic Boltzmann equations �15,16� for photons,
electrons, positrons, and protons in our case are

1

c

� f i

�t
= �

q

�	i
q − 
i

qf i� , �4�

where the index i denotes the type of particle and 	i
q, 
i

q are
the emission and the absorption coefficients for the produc-
tion of the i th particle via the reaction labeled by q. We
account for all relevant binary and triple interactions be-
tween electrons, positrons, photons, and protons as summa-
rized in Tables I and II.

It has been shown �13� that independent of the functional
form of the initial distribution functions f i�� ,0�, plasma
evolves to a thermal equilibrium state through the kinetic
equilibrium when the distribution functions of all the par-
ticles acquire the same form

f i��� = exp�−
� − �i

i
	 , �5�

where �i=�i / �mic
2� is the energy of the particles, �i

��i / �mic
2� and i�kBTi / �mic

2� are their chemical poten-
tials and temperatures, and kB is Boltzmann’s constant. The
unique signature of kinetic equilibrium is the equal tempera-
tures of all the particles and the nonzero chemical potential
of the photons. In fact, the same is also true for a pair plasma
with proton loading �14�. The approach to complete thermal
equilibrium is more complicated in this latter case and de-
pends on the baryon loading. For B�
mp /me, protons are
rare and thermalize via proton-electron �positron� elastic
scattering, while in the opposite case B�
mp /me, proton-
proton Coulomb scattering dominates over the proton-
electron scattering and brings protons into thermal equilib-
rium first with themselves. Then, protons thermalize with the
pair plasma through triple interactions �for details, see �14��.
The two-body time scales involving protons should be com-
pared to the three-body time scales bringing the electron-
positron-photon plasma into thermal equilibrium. In fact, we
found that for B�1, the electron-positron-photon plasma
reaches thermal equilibrium at a given temperature, while
protons reach thermal equilibrium with themselves at a dif-
ferent temperature; only later the plasma evolves to complete
thermal equilibrium with the single temperature on a time
scale

�th � Max��3p,Min��ep,�pp�� , �6�

where

�ep �
mpc

�e�Tne
, �7�

�pp �
mp

me
��Tnpc�−1, �8�

�3p � ���Tnec�−1 �9�

are the proton-electron �positron� elastic-scattering time
scale, the proton-proton elastic-scattering time scale, and the
three-particle interaction time scale, respectively, while �T is
the Thomson cross section and � is the fine-structure con-
stant. In Eqs. �7�–�9�, the energy dependence of the corre-
sponding time scales is neglected.

The chemical relaxation �thermalization� time scale is
usually computed as

TABLE I. Microphysical processes in the pair plasma.

Binary interactions
Radiative and

pair-producing variants

Møller and Bhabha

e1
�e2

�→e1
��e2

��

e�e�→e��e��

Bremsstrahlung

e1
�e2

�↔e1
��e2

���

e�e�↔e��e���

Single Compton
e��→e���

Double Compton
e��↔e������

Pair production
and annihilation
���↔e�e�

Radiative pair production
and three-photon annihilation

���↔e�e���
e�e�↔�����

e��↔e��e�e��

TABLE II. Microphysical processes in the pair plasma involving
protons. For details, see also �3�.

Binary interactions
�Coulomb scattering�

Radiative and
pair-producing variants

p1p2→p1�p2� pe�↔p�e���

pe�→p�e�� p�↔p�e�e�
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�i = lim
t→�

��Fi�t� − Fi�����dFi

dt
	−1� , �10�

where Fi=exp��i /i� is the fugacity of a particle of type i.
Instead of Fi, we use one of the quantities i, �i, ni, or �i in
this computation.

We solved the Boltzmann equations with parameters
�� ,B� in the range given by Eqs. �2� and �3�. In total, 78
models were computed, starting from a nonequilibrium con-
figuration until reaching a steady-state solution on the com-
putational grid with 20 intervals for the particle energy and
16 intervals for the angles �for details, see �14��. For each
model, we computed the corresponding time scales for all
particles of the ith kind. For practical purposes, instead of
Eq. �10�, we used the following approximation:

�th =
1

tfin − tin


tin

tfin

��t� − �tmax���d

dt
	−1

dt , �11�

with tin� tfin� tmax, where tmax is the moment of time where
the steady solution is reached and tin and tfin are the bound-
aries of the time interval over which the averaging is per-
formed �for details, see �17��. The thermalization time scale
of the electron-positron-photon component is shown in Fig. 1
as a function of the total-energy density of the plasma and
the baryonic loading parameter. The time scales of electrons,
positrons, and photons coincide. The final thermalization
time scale of pair plasma with baryonic loading is shown in
Fig. 2. Its dependence on either variable cannot be fit by a
simple power law, although it decreases monotonically with
increasing total-energy density, while it is not even a mono-
tonic function of the baryonic loading parameter.

In Fig. 3, the final thermalization time scale is shown for
all the models we computed, along with the “error bars”

which mark one standard deviation of the time scale �11�
away from the average value �th in the averaging interval
tin� t� tfin. The largest source of error comes from the small
values of the time derivative in Eq. �11�, although errors are
typically below a few percent.

In Fig. 4, we compare for B=1 the actual value of the
thermalization time scale of the electron-positron-photon
component to the value estimated from Eq. �9�. Both values
clearly differ significantly. Actually, the systematic underes-
timation by more than 1 order of magnitude which occurs for
B�1 disappears for larger baryonic loading.

In Fig. 5, we present the computed values of the final
thermalization time scale of the pair plasma with baryonic
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3
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FIG. 1. Thermalization time scale of the electron-positron-
photon component of plasma as a function of the total-energy den-
sity and the baryonic loading parameter. The energy density is mea-
sured in erg /cm3, time is seconds.
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FIG. 2. Final thermalization time scale of a pair plasma with
baryonic loading as a function of the total-energy density and the
baryonic loading parameter. The energy density is measured in
erg /cm3, time is seconds.
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FIG. 3. Final thermalization time scale of pair plasma with bary-
onic loading as a function of the total-energy density for selected
values of the baryonic loading parameter B= �10−3 ,10−1.5 ,1 ,10,
102 ,103�. The energy density is measured in erg /cm3, time is sec-
onds. Error bars correspond to one standard deviation of the time
scale �11� away from the average value �th over the interval tin� t
� tfin.
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loading together with the value estimated from Eq. �6�, again
for B=1. Unlike the previous case, the final thermalization
time scale is a more complex function of the total-energy
density. Interestingly, less significant deviations from the
value �6� occur at the extremes of the interval �3�.

In this paper, we have computed the time scale of ther-
malization for an electron-positron plasma with proton load-
ing over wide ranges of both the total-energy density �10
orders of magnitude� and baryonic loading parameter �6 or-
ders of magnitude�, allowing the treatment of the limiting
cases of almost pure electron-positron plasma, almost pure
electron-ion plasma, as well as intermediate cases. The final
result is presented in Figs. 1 and 2. The relaxation to thermal
equilibrium for the total-energy density �2� always occurs on
a time scale less than 10−9 s. It is interesting that the
electron-positron-photon component and/or proton compo-
nent can thermalize earlier than the time at which complete
thermal equilibrium is reached. The relevant time scales are
given and compared to the order-of-magnitude estimates.
Unlike previous work, there are no simplifying assumptions
in our method since collisional integrals in the Boltzmann
equations are computed directly from the corresponding
QED matrix elements, e.g., from the first principles.

These results may be of relevance for the ongoing and
future laboratory experiments aimed at creating electron-
positron plasmas. Current optical lasers producing pulses
during �10−15 s carrying energy �102 J=109 erg are ca-
pable to produce positrons with the number density
1016 cm−3 �4�. There are claims that densities of the order of
1022 cm−3 are reachable �18�. These densities today are yet
far from 1028 cm−3 required for the plasma with the size r0
��m to be optically thick �5�. Notice that the expansion
time scale of such plasma will be r0 /c�10−14 s, while the
time scale to establish kinetic equilibrium for the number
density considered is of the same order of magnitude. These
arguments show that theoretical results obtained assuming
thermal or kinetic equilibrium, such as in �2�, cannot be ap-
plied to pair plasma, generated by ultraintense lasers.

However, results presented in this paper are important for
understanding astrophysical systems observed today in
which optically thick electron-positron plasmas are present.

As specific example, we recall that electron-positron pairs
play the crucial rule in the dynamics of GRB sources. Con-
sidering typical energies and initial radii for GRB progeni-
tors �19�

1048 erg � E0 � 1054 erg, 107 cm � R0 � 108 cm,

�12�

we estimate the range for the energy density in GRB sources

1023 erg

cm3 � � � 1032 erg

cm3 , �13�

which coincides with Eq. �2�. As for the baryonic loading of
GRBs, it is typically in the lower range of Eq. �2�, namely
�9�,

10−3 � B � 10−2. �14�

Such high-energy density leads to large number density of
electron-positron pairs in the source of GRB of the order of

1030 cm−3 � n � 1037 cm−3, �15�

making it opaque to photons with huge optical depth of the
order of

1013 � � � 1018. �16�

In fact, the radiative pressure of optically thick electron-
positron plasma in these systems is responsible for the effect
of accelerated expansion �9,20–22� leading to unprecedented
Lorentz factors attained ��B−1 up to 103 �see, e.g., �23,24��.
The role of the baryon admixture in electron-positron plasma
in GRBs is to transfer internal energy of pairs and photons
into kinetic energy of the bulk motion thus giving origin to
afterglows of GRBs �9,19�. Notice that in GRBs the time
scales of thermalization are much shorter than the dynamical
time scales R0 /c�10−3 s, which implies that expanding
electron-positron plasma even in the presence of baryons is
in thermal equilibrium during the accelerating optically thick
phase �25�.

After completion of this work, we learned about the pub-
lication of �26� where work similar to ours has been per-
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FIG. 5. Final thermalization time scale of a pair plasma with
baryonic loading as a function of the total-energy density �points�,
compared to the �th time scale �joined points� computed using Eq.
�6� for B=1. The energy density is measured in erg /cm3, time is
seconds.
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FIG. 4. Thermalization time scale of the electron-positron-
photon component of the plasma as a function of the total-energy
density �points� compared to the �3p time scale �joined points� com-
puted using Eq. �9� for B=1. The energy density is measured in
erg /cm3, time is seconds.
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formed. Between this paper and our work, conceptual differ-
ences should be noted which concern the attribution of
thermalization to two-body Møller and Bhabha scattering,
while we have pointed out explicitly that three-body interac-
tions play an essential role. The thermalization time scales

obtained by us have been computed with reference to these
three-body interactions.

We thank both anonymous referees for their comments
which allowed the remarkable improvement of the paper.
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